INTRODUCTIO

COMPUTATIONAL PROPERTIES OF REDUPLICATIO

METHOT

RESULT

DISCUSSIO

REFERENCE

PROBING RNN ENCODER-DECODER GENERALIZATION OF SUBREGULAR FUNCTIONS USING REDUPLICATION

Max Nelson, Hossep Dolatian, Jonathan Rawski, Brandon Prickett

University of Massachusetts Amherst, Stony Brook University

January 5, 2020

TALK IN A NUTSHELL

- Formal Languages/Automata:
 - Necessary and sufficient conditions on computable functions
 - ▶ Provide target function classes for generalization/learning
 - transparent, analytical guarantees independent of the machine
- Recurrent Neural Network/ finite-state connections
- What is the generalization capacity of RNN Encoder-Decoders?

ENCODER-DECODERS AND SUBREGULAR REDUPLICATION

- Reduplication: variable-length subregular copy functions
- Vanilla Encoder-Decoders struggle to capture generalizable reduplication, networks with attention reliably succeed
- Attention weights mirror subregular 2-way FST processing, suggests they are approximating them

RNN AND REGULAR LANGUAGES

Language: Does string w belong to stringset (language) L

• Computed by different classes of grammars (acceptors)

How expressive are RNNs?

Turing complete	infinite precision+time	(Siegelmann, 2012)
\subseteq counter languages	LSTM/ReLU	(Weiss et al., 2018)
Regular	SRNN/GRU	(Weiss et al., 2018)
	asymptotic acceptance	(Merrill, 2019)
Weighted FSA	Linear 2nd Order RNN	(Rabusseau et al., 2019)
Subregular	LSTM problems	(Avcu et al., 2017)
	•	

RNN ENCODER-DECODER AND TRANSDUCERS

- Function: Given string w, generate f(w) = v
 - = accepted pairs of input & output strings
 - ▶ Computed by different classes of grammars (transducers)
- Recurrent encoder maps a sequence to $v \in \mathbb{R}^n$, recurrent decoder language model conditioned on v (Sutskever et al., 2014)
- How expressive are they?

BRIEF TYPOLOGY OF REDUPLICATION

- Reduplication is typologically common¹
- Basic division: partial vs. total reduplication
 - (1) Partial reduplication = bounded copy

a. CV: $guyon \rightarrow gu \sim guyon$

'to jest'→'to jest repeatedly' (Sundanese)

b. Foot: $(gindal)ba \rightarrow gindal \sim gindalba$

'lizard sp.' → 'lizards'

c. Syllable $vam.se \rightarrow vam \sim vamse$

'hurry' → 'hurry (habitual)' (Yaqui)

(2) Total reduplication = unbounded copy

a. wanita→wanita~wanita

'woman'→'women' (Indonesian)

(Yidin)

¹(Moravcsik, 1978; Rubino, 2013)

SUBREGULAR COMPUTING OF REDUPLICATION

- Why reduplication (RED)?
 - ▶ inhabits **sub**classes of **regular** string-to-string functions
 - computed by restricted types of Finite-State Transducers
- 1. 1-way FST: reads input once in one direction
 - ~ computes Rational functions e.g., Sequential functions like partial RED
- 2. 2-way FST: reads multiple times, moves back and forth
 - ~ computes Regular functions e.g., Concatenated-Sequential functions like partial & total RED

• Working example: $pat \rightarrow [pa \sim pat]$

• Working example: pat→[pa~pat] Input: р Output: q_2 $\Sigma:\Sigma$ a:a~ta $\rtimes:\lambda$ **κ**:λ q_4 $start \rightarrow$ p:p a:a~pa q_3

1-WAY FST LIMITATIONS

- How does a 1-way FST handle reduplication?
 - \rightarrow memorizes all possible reduplicants
- Many limitations:

1. State explosion:

- scaling problems as size of reduplicant and alphabet increases
- ▶ unwieldy machines (Roark and Sproat, 2007:54)

2. Limited expressivity:

- can do partial reduplication but not total reduplication
- No bound on how big the copies are

3. Segment alignment:

Memorizes, doesn't 'copy'

 \bullet Working example: pat \rightarrow [pa~pat]

Working example: pat→[pa~pat]
 Input: × p a t
 Output:

• Working example: pat→[pa~pat]

Input: par par

 \mathbf{a}

U

Output:

• Working example: pat→[pa~pat]

Input: \rtimes p a t \bowtie Output: p

• Working example: $pat \rightarrow [pa \sim pat]$

Input: \rtimes p a t \bowtie Output: p a

• Working example: pat→[pa~pat]

Input: \rtimes p a t \bowtie Output: p a

Input: p a t
Output: p a

• Working example: pat→[pa~pat] Input: \mathbf{a} Output: t р a C:C:+1 $\rtimes: \lambda: +1$ V:V:-1 $\kappa:\lambda:+1$ $\Sigma:\lambda:-1$ q_3 ×:~: +1 $\Sigma : \Sigma : +1$

REDUPLICATION WITH 2-WAY FSTS

- How does 2-way FST handle reduplication?
 - \rightarrow look *back* at the input to generate copies
- Increased expressivity, removes limitations...

1. Compact:

no state explosion

2. Expressive:

can do partial and total reduplication

3. Segment alignment:

- Output segments are aligned with the 'right' input segments
- Formally, look at origin semantics of how input-output segments align (Bojańczyk, 2014)

SEGMENT ALIGNMENT WITH FSTS

- Origin information: origin of output symbols in the input
- 1-way FSTs remember what to repeat, they don't actively copy

• But linguistic theory says "copy" like a 2-way FST!

LEARNING REDUPLICATION

Reduplication is *provably* learnable in polynomial time and data (Chandlee et al., 2015; Dolatian and Heinz, 2018)

RNNs with segmental inputs cannot be trained as reduplication acceptors (Gasser, 1993; Marcus et al., 1999)

• Recognizing reduplication requires the comparison of static subsequences - difficult for an RNN to store

Encoder-Decoders learn reduplication with a fixed-size reduplicant in a small toy language (Prickett et al., 2018)

- Generalizable to novel segments and sequences
- Generalization to novel lengths not tested, computable by 1-way FST that uses featural representations

RECURRENCE

- Recurrence relation: The function relating hidden states in the encoder and decoder RNNs - affects practical expressivity of network
- Two types of recurrence tested:
 - ▶ **sRNN** t^{th} state is a nonlinear function of the t^{th} input and state t-1 (Elman, 1990)
 - ▶ **GRU** t^{th} state is a linear function of three functions (gates) of the t^{th} input and state t-1 (Cho et al., 2014)
- Saturating nonlinearities (tanh) sRNNs and GRUs cannot count with finite precision (Weiss et al., 2018)
- LSTM is supra-regular, we are testing necessary properties of RNN and GRU, which are finite-state (Merrill, 2019)

ATTENTION

- In standard ED, the encoded representation is the only link between the encoder and decoder
- Global attention allows the decoder to selectively pull information from hidden states of the encoder (Bahdanau et al., 2014)
- **FLT Analog**: 2-way FST has full access to the input by moving back and forth

Test data

• Input-output mappings generated with 2-way FSTs from RedTyp database²

Initial-CV tasgati→ta~tasgati
 Fixed-size reduplicant
 Initial two-syllable (C*VC*V) tasgati→tasga*tasgati
 Onset maximizing, fixed over vowels
 Total tasgati→tasgati~tasgati
 Variably sized reduplicant

- 10,000 generated for each language, 70/30 train/test split
- Minimum string length 3 maximum string length varied
- Alphabet of 10, 16, or 26 characters
- Boundary symbols (~) are not present

²Dolatian and Heinz (2019); also available on GitHub

EXPERIMENT 1

- Interaction between reduplication type, recurrence, and attention
 - ▶ Total and partial (two-syllable) reduplication
 - sRNN and GRU with and without attention
- Max string length: 9
- 10 symbols alphabet

Attention should improve function generalization across reduplication types and recurrence relations

EXPERIMENT 1

EXPERIMENT 2

- Effects of alphabet size and range of permitted string lengths
- CV reduplication only
- sRNN/GRU × attention/non-attention × 3 alphabet sizes × 7 length ranges

Network generalization while learning a general reduplication function should be invariant to language composition

EXPERIMENT 2

EXPERIMENT 2

DISCUSSION

- Networks with global attention learn and generalize all types of reduplication and seem robust to string length and alphabet size
- sRNNs without attention show slightly better generalization of partial reduplication than total reduplication
 - Confound with less attested reduplicant lengths or a bias preferring the regular pattern?
- GRUs perform better than sRNNs across all conditions
 - Without attention not robust to length/alphabet likely learning heuristics that capture most data rather than a general function

Networks that cannot see material in the input multiple times cannot learn generalizable reduplication

ATTENTION AND ORIGIN SEMANTICS

1-Way:

2-Way:

SUMMARY

1. Why use reduplication functions?

- properties define fine-grained subregular function classes
- Allows us to test the generalization capacity of neural nets

2. Expressivity of attention

 Attention is necessary and sufficient for robustly learning and generalizing reduplication functions using Encoder-Decoders

3. FST approximations

- Non-attention networks are limited to a single input pass, approximating 1-way FST
- Attention networks can read the input again during decoding, approximating 2-way FST,

4. Attention weights and origin information

- Evidence for approximation comes from attention weights
- ▶ IO correspondence relations mirror origin semantics of 2-way FST
- 5. Next step: trying more copying and non-copying functions

- Albro, D. M. (2005). <u>Studies in Computational Optimality Theory,</u> with Special Reference to the Phonological System of Malagasy. Ph. D. thesis, University of California, Los Angeles, Los Angeles.
- Avcu, E., C. Shibata, and J. Heinz (2017). Subregular complexity and deep learning. In S. Dobnik and S. Lappin (Eds.), <u>CLASP Papers</u> in Computational Linguistics: Proceedings of the Conference on <u>Logic and Machine Learning in Natural Language (LaML 2017)</u>, Gothenburg, 12 –13 June, pp. 20–33.
- Bahdanau, D., K. Cho, and Y. Bengio (2014). Neural machine translation by jointly learning to align and translate. <u>arXiv preprint</u> arXiv:1409.0473.
- Beesley, K. and L. Karttunen (2003). Finite-state morphology: Xerox tools and techniques. Stanford, CA: CSLI Publications.
- Bojańczyk, M. (2014). Transducers with origin information. In J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias (Eds.), Automata, Languages, and Programming, Berlin, Heidelberg, pp. 26–37. Springer.

- Chandlee, J., R. Eyraud, and J. Heinz (2015, July). Output strictly local functions. In <u>Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015)</u>, Chicago, USA, pp. 112–125.
- Cho, K., B. Van Merriënboer, D. Bahdanau, and Y. Bengio (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
- Crysmann, B. (2017). Reduplication in a computational HPSG of Hausa. Morphology 27(4), 527–561.
- Dolatian, H. and J. Heinz (2018, September). Learning reduplication with 2-way finite-state transducers. In O. Unold, W. Dyrka, , and W. Wieczorek (Eds.), Proceedings of Machine Learning Research:
 International Conference on Grammatical Inference, Volume 93 of Proceedings of Machine Learning Research, Wroclaw, Poland, pp. 67–80.
- Dolatian, H. and J. Heinz (2019). Redtyp: A database of reduplication with computational models. In <u>Proceedings of the Society for Computation in Linguistics</u>, Volume 2. Article 3.

- Elman, J. L. (1990). Finding structure in time. <u>Cognitive</u> science 14(2), 179–211.
- Gasser, M. (1993). <u>Learning words in time: Towards a modular connectionist account of the acquisition of receptive morphology</u>. <u>Indiana University, Department of Computer Science</u>.
- Heinz, J. and R. Lai (2013). Vowel harmony and subsequentiality. In A. Kornai and M. Kuhlmann (Eds.), <u>Proceedings of the 13th</u>
 Meeting on the Mathematics of Language (MoL 13), Sofia, Bulgaria, pp. 52–63. Association for Computational Linguistics.
- Hulden, M. (2009). Finite-state machine construction methods and algorithms for phonology and morphology. Ph. D. thesis, The University of Arizona, Tucson, AZ.
- Marcus, G. F., S. Vijayan, S. B. Rao, and P. M. Vishton (1999). Rule learning by seven-month-old infants. <u>Science</u> 283(5398), 77–80.
- Merrill, W. (2019). Sequential neural networks as automata. In <u>Proceedings of the Deep Learning and Formal Languages workshop</u> at ACL 2019.

- Moravcsik, E. (1978). Reduplicative constructions. In J. Greenberg (Ed.), <u>Universals of Human Language</u>, Volume 1, pp. 297–334. Stanford, California: Stanford University Press.
- Prickett, B., A. Traylor, and J. Pater (2018). Seq2seq models with dropout can learn generalizable reduplication. In <u>Proceedings of the Fifteenth Workshop on Computational Research in Phonetics</u>, <u>Phonology</u>, and Morphology, pp. 93–100.
- Rabusseau, G., T. Li, and D. Precup (2019). Connecting weighted automata and recurrent neural networks through spectral learning. In AISTATS.
- Roark, B. and R. Sproat (2007). <u>Computational Approaches to Morphology and Syntax</u>. Oxford: Oxford University Press.
- Rubino, C. (2013). <u>Reduplication</u>. Leipzig: Max Planck Institute for Evolutionary Anthropology.
- Savitch, W. J. (1989). A formal model for context-free languages augmented with reduplication. <u>Computational Linguistics</u> <u>15</u>(4), 250–261.

- Siegelmann, H. T. (2012). <u>Neural networks and analog computation:</u> beyond the Turing limit. Springer Science & Business Media.
- Sutskever, I., O. Vinyals, and Q. V. Le (2014). Sequence to sequence learning with neural networks. <u>CoRR</u> <u>abs/1409.3215</u>.
- Walther, M. (2000). Finite-state reduplication in one-level prosodic morphology. In Proceedings of the 1st North American chapter of the Association for Computational Linguistics conference, NAACL 2000, Seattle, Washington, pp. 296–302. Association for Computational Linguistics.
- Weiss, G., Y. Goldberg, and E. Yahav (2018). On the practical computational power of finite precision rnns for language recognition. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 740–745.

Guide to Appendix

- Reduplication across FSTs and RNNs [25]
- Harmony Extensions [26]
- Finite-State Automata & Representation Learning [27]
- Learning Reduplication [28]
- Problems with 1-way FSTs for Total Reduplication [29]
- Total reduplication with 2-way FSTs [31]

REDUPLICATION ACROSS FSTS AND RNNS

1-way and 2-way FSTs compute reduplicative functions differently

	1-way	2-way
Strategy?		
How does it reduplicate?	Memorize	Look back
Scaling?		
Is there state explosion	√ ②	X 🙂
Expressive?		
Can it do total reduplication?	X 😊	√ ©
Alignment?		
Does origin information match theory?	X 😊	√ ②
v	T. Control of the Con	

- Strategy creates all additional properties
- Link to RNNs:
 - attention-less EDs compute like 1-way FSTs!
 - ▶ attention-based EDs compute like 2-way FSTs

NEXT: ATTENTION, 2-WAY, AND DETERMINISM

The subregular hierarchy is more subtle

2-way
$$DFT = 2$$
-way $fNFT =$ Regular functions

1-way $fNFT =$ Rational functions

C-Sequential

1-way $DFT =$ Sequential

C-OSL

- Does attention enable non-regularity? Non-determinism?
 - What about $w \to w^3$, $w \to ww^r$, $w \to w^w$, ...
- Idea: Use Harmony processes (Heinz and Lai, 2013)
 - harmony spans subregular hierarchy
 - unattested non-regular harmony (ex. Majority Rules)

FINITE-STATE AUTOMATA & REPRESENTATION LEARNING

- An FSA induces a mapping $\phi: \Sigma^* \to \mathbb{R}$
- The mapping ϕ is compositional
- The output $f_A(x) = \phi(x), \omega$ is linear in $\phi(x)$

LEARNING REDUPLICATION

- Reduplication is *provably* learnable in polynomial time and data (Chandlee et al., 2015; Dolatian and Heinz, 2018)
- RNNs with segmental inputs cannot be trained as reduplication acceptors (Gasser, 1993; Marcus et al., 1999)
 - Recognizing reduplication requires the comparison of static subsequences - difficult for an RNN to store
- Encoder-Decoders learn reduplication with a fixed-size reduplicant in a small toy language (Prickett et al., 2018)
 - Generalizable to novel segments and sequences
 - Generalization to novel lengths not tested, computable by 1-way FST that uses featural representations

PROBLEMS WITH 1-WAY FSTS FOR TOTAL

- 1-way FSTs can do Partial RED inelegantly
- Total reduplication **cannot** be modeled at all.
- Why?
 - copied portion has unbounded size
 - ▶ 1-way FST can't do that!
 - ▶ needs an infinite # of states

PROBLEMS WITH 1-WAY FSTS FOR TOTAL

- Total reduplication **cannot** be modeled at all.
- Can you approximate?
 - some finite-state approximations exist...³
 - But: they impose un-linguistic restrictions (e.g. a finite bound on word size,...) so don't directly capture reduplication
- Give up on finite-state?
 - ► MCFGs, HPSG, pushdown accepters with queues⁴
 - ▶ But... those are recognizers not transducers

³Hulden (2009); Beesley and Karttunen (2003); Walther (2000)

⁴Albro (2005); Crysmann (2017); Savitch (1989)

- Total reduplication copies an unbounded size
 - (3) wanita→wanita~wanita 'woman'→'women' (Indo.)

- Total reduplication copies an unbounded size
 - (4) wanita→wanita 'woman'→'women' (Indo.)
- This 2-way FST reads the input left to right (+1), goes back (-1), and reads the input again (+1)

- Indonesian example: wanita-wanita
- Working example: by \rightarrow ?

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

- \bullet Indonesian example: wanita \rightarrow wanita
- Working example: bye→bye~bye

Input: b y e ×
Output:

- Working example: bye→bye~bye

Input: × b y e × Output: b

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

Input: × b y e × Output: b y

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

Input: \times b y e \times Output: b y e

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

Input: \times b y e \sim Output: b y e \sim

- \bullet Indonesian example: wanita \rightarrow wanita
- Working example: bye→bye~bye

Input: \times b y e \times Output: b y e

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

Input: \times b y e \times Output: b y e \sim

- \bullet Indonesian example: wanita \rightarrow wanita
- Working example: bye→bye~bye

Input: \times b y e \times Output: b y e \sim

- \bullet Indonesian example: wanita \rightarrow wanita
- Working example: bye→bye~bye

Input: \nearrow b y e \nearrow Output: b y e \sim

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

• Indonesian example: wanita-wanita

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

- Indonesian example: wanita-wanita
- Working example: bye→bye~bye

