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Abstract

This paper provides a geometric characterization of
subclasses of the regular languages. We use finite
model theory to characterize objects like strings
and trees as relational structures. Logical state-
ments meeting certain criteria over these models
define subregular classes of languages. The seman-
tics of such statements can be compiled into ten-
sor structures, using multilinear maps as function
application for evaluation. This method is applied
to consider two properly subregular languages over
different string models.

1 Introduction

Formal language theory provides a way to explicitly tie the
complexity of linguistic patterns to specific claims about
memory organization and thus provides an indirect way of
measuring the cognitive demands of language. The Chomsky
hierarchy [Chomsky, 1959] is the standard way in formal lan-
guage theory to measure language complexity. One particular
class of interest is the regular languages. One of the most
well-studied objects in computer science, the regular lan-
guages are characterized by regular expressions, finite-state
machines, and statements in Monadic Second-Order logic,
among others [Thomas, 1997]. Linguistically, the regular
class has been shown to sufficiently characterize phonolog-
ical and morphological patterns [Kaplan and Kay, 1994].

More recently, it has been shown that many linguistic pat-
terns inhabit subclasses of the regular languages (see [Heinz,
2018] for an overview). These subclasses each have partic-
ular automata-theoretic, algebraic, and logical characteriza-
tions [Rogers et al., 2013]. This paper considers logical char-
acterizations of subregular language classes over various rep-
resentations of structures that are defined using finite model
theory.

In the last few decades, finite model theory has emerged
as a powerful description language for linguistics. Model
theory has been used for comparisons of particular gram-
matical theories in phonology and syntax [Rogers, 1998;
Pullum, 2007; Graf, 20101, and for studying the nature of lin-
guistic structures and processes themselves [Heinz, 2018]. In
these formulations, linguistic structures like strings and trees

are modeled using relational information which holds among
the items characterizing a particular domain.

Constraints over model-theoretic structures, as well as
translation between one structure and another, can be de-
scribed using statements in mathematical logic. Such con-
straints and transformations express in an elegant way the
relationship between grammars and representation. In par-
ticular, various types of logic over specific model-theoretic
representations (say, strings and trees) yield particular classes
of grammars [Rogers, 1996].

It is of interest to see how these models may be char-
acterized geometrically. Geometric approaches to language
and symbolic cognition in general have become increasingly
popular during the last two decades. There is work dealing
with conceptual spaces for sensory representations [Garden-
fors, 2004], multilinear representations for compositional se-
mantics [Blutner, 2009; Aerts, 20091, and dynamical systems
for modeling language processes [Beim Graben et al., 2008;
Tabor, 2009].

One particularly significant contribution in this area is
Smolensky’s Tensor Product Representations [Smolensky,
1990]. Here, subsymbolic dynamics of neural activation pat-
terns in a vector space description become interpreted as sym-
bolic cognitive computations at a higher-level description by
means of “filler/role” bindings via tensor products. These ten-
sor product representations form the symbolic foundation of
Harmonic Grammar and Optimality Theory, and have been
successfully employed for phonological and syntactic com-
putations. [Smolensky and Legendre, 2006].

In tensor product representations, symbolic structures are
decomposed into structural roles and fillers, bound together
using the tensor product. For example, strings can be decom-
posed into a tensor realizing string positions, each of which is
bound to a tensor realizing different symbols in some alpha-
bet. Similarly, tree structures can be represented recursively,
with a tensor product representation using tree node position
as the structural role, and using an entire subtree as an alpha-
bet filler symbol. [Hale and Smolensky, 2001] use this tree
representation to describe a Harmonic Grammar for context-
free languages, and [Beim Graben and Gerth, 2012] use them
to formalize [Stabler, 1997]’s Minimalist Grammars.

While tensor product representations form a powerful
method for geometrically interpreting symbolic structures,
explicitly modeling the relational structures given by model-



Figure 1: Visualizations of the successor (left) and precedence (right) models of abba.

theory, as well as the logical constraints characteristic of sub-
regular languages, is an open issue. This paper provides
this connection, by translating model-theoretic structures into
vector spaces and describing logical grammatical constraints
over them using tensors.

There has been some recent work on embedding logi-
cal calculi using tensors. [Grefenstette, 2013] introduces
tensor-based predicate calculus that realizes logical opera-
tions. [Yang e al., 2014] introduce a method of mining Horn
clauses from relational facts represented in a vector space.
[Serafini and Garcez, 2016] introduce logic tensor networks
that integrate logical deductive reasoning and data-driven re-
lational learning. [Sato, 2017] formalizes Tarskian semantics
of first-order logic in vector spaces. Here we apply Sato’s
method for translating model-theoretic representations and
first-order logic into tensors.

Finally, tensor methods and subregular gram-
mars/automata have been used to evaluate and interpret
neural networks (see [Rabanser et al., 2017]). [Avcu et al.,
] tested the generalization capacity of LSTM networks on
the Strictly Local and Strictly Piecewise languages. [McCoy
et al., 2018] showed that recurrent neural networks (RNNs)
implicitly encode tensor product representations, and [Weiss
et al., 2017] used regular languages to test the generaliza-
tion capacity of RNNs. Explicit translation of subregular
languages into tensors over various representations thus
allows model-theoretic linguistics to study neural nets in a
principled way.

2 Model Theoretic Representations

2.1 Elements of Finite Model Theory

Model theory, combined with logic, provides a powerful way
to study and understood mathematical objects with struc-
tures [Enderton, 2001]. This paper only considers finite re-
lational models [Libkin, 2004].

Definition 1. A model signature is a tuple S =
(D; R1, Ro, ..., R,,) where the domain D is a finite set, and
each R; is a n;-ary relation over the domain.

In this paper, the relations are at most binary.

Definition 2. A model for a set of objects €2 is a total, one-
to-one function from ) to structures whose type is given by a
model signature.

2.2 String Models

We can view strings as models. The set of all possible finite
strings of symbols from a finite alphabet > and the set of
strings of length < n are ¥* and X", respectively. The
unique empty string is represented with A. The length of a
string w is |w|, so |A| = 0. If v and v are two strings then we

denote their concatenation with wv. If w is a string and o is
the ith symbol in w then w; = o, so abeds = b.

A conventional model for strings in >* is given by the
signature I'Y = (D; <, [R,],ex) and the function M < :
¥* — I'Y such that M9 (w) = (D¥; <, [R¥]s,ex) Where
DY ={1,...,|wl|} is the domain, < = {(i,i+1) € Dx D |
J = i+ 1} is the successor relation which orders the elements
of the domain, and [R¥],¢cx is a set of |X| unary relations
such that for each o € ¥, R¥ = {i € D" | w; = o}. We
will usually omit the superscript w since it will be clear from
the context.

For example, with 3 = {a, b, ¢} and the model above for
strings, we have

M (abba) = (D = {1,2,3,4};
4= {(17 2)7 (27 3)7 (37 4)}9
R, ={1,4}; Ry = {2,3},R. = 0) (1)
Figure 1 illustrates M <(abba) on the left.

Another conventional model is the precedence model, with
the signature I' = (D; <, [R,],ex). It differs from the suc-
cessor model only in that the order relation is defined with
general precedence (<), which is defined as <= {(i,j) €
D x D | < j} [Biichi, 1960; McNaughton and Papert, 1971;

Rogers et al., 2013]. Under this model, the string abba has the
following model.

M= (abba) = <D ={1,2,3,4};
<= {(17 2)7 (173)7 (17 4)7 (273)7 (274)7 (374)}7
R, = {174}7Rb = {273}7Rc = ®> (2)

Figure 1 illustrates M <(abba) on the right.

Under both model signatures, each string w € X* of length
k has a unique interpretable structure. The model of string
W = 0102 ...0} has domain D = {1;2...k}, and for each
o0 € ¥, R, = {i € D|w,; = o}. The difference between M <
and M~ is the ordering relation. Under the successor model
M, the ordering relation is < = {(i,i + 1) € DxzD},
while for the precedence model M =, the ordering relation is
<Y {(i,4) € D x D|i < j}

However, structures are more general in that they corre-
spond to any mathematical structure conforming to the model
signature. As such, while a model of a string w will always be
a structure, a structure will not always be a model of a string
w. The size of a structure S, denoted |S|, coincides with the
cardinality of its domain.

3 Logic, Languages, and Language Classes

Usually a model signature provides the vocabulary for
some logical language L, which contains N constants



{e1,...,en}. Following notation of [Sato, 2017], a model
M = (D, I) is thus a pair of domain, a nonempty set D and
an interpretation [ that maps constants e; to elements (enti-
ties, individuals) I(e;) € D and k-ary predicate symbols 7 to
k-ary relations I(r) C D¥

An assignment ¢ is a mapping from variables x to an el-
ement a(z) € D. It provides a way of evaluating formulas
containing free variables. Syntactically terms mean variables
and/or constants and atomic formulas or atoms 7 (¢1, . . ., tx)
are comprised of a k-ary predicate symbol r and k terms
t1,...,t, some of which may be variables. Formulas F' in
L are inductively constructed as usual from atoms using log-
ical connectives (negation —, conjunction A, disjunction V)
and quantifiers (3, V).

There are several well-known connections between logical
statements and languages classes. Most famous is [Biichi,
1960]’s result that languages characterizable by finite-state
machines, the regular languages, are equivalent to statements
in Monadic Second-Order Logic over the precedence model
for strings (and successor, since precedence is MSO-definable
from successor).

Within the regular languages, many well-known subregu-
lar classes can be characterized by weakening the logic [Mc-
Naughton and Papert, 1971; Rogers et al., 2013; Thomas,
1997]. An overview of these connections is shown is Figure 2
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Figure 2: Subregular Hierarchy of Languages (from [Heinz, 2018])

Here we restrict ourselves to first-order logic, as it is the
lightest restriction corresponding to properly subregular lan-
guages. First-order statements over particular model sig-
natures define distinct language classes. For the successor
model, [Thomas, 1997] characterizes FO(<) in terms of Lo-
cal Threshold Testability, equivalence in terms of the multi-
plicity of k-subfactors up to some fixed finite threshold t.

Theorem 1. ([Thomas, 1997]) A set of strings is First-
order definable over(D; <, [Ry)sex) iff it is Locally Thresh-
old Testable.

Correspondingly, First-order formulas over the precedence
model characterize the Non-Counting or Star-Free class of
languages.

Theorem 2. ([McNaughton and Papert, 1971]) Languages
that are first-order definable over (D; <, [R,],cx) are Non-
Counting.

Non-Counting languages are those languages definable in
linear temporal logic, and which have with aperiodic syn-
tactic monoids. Since the Successor relation (<) is first-
order definable from Precedence (<), the Non-Counting class
properly includes the Locally Threshold Testable class.

Further restrictions of the logic over these signatures to
propositional logic or conjunctions of negative literals charac-
terize subclasses of the LTT and Star Free languages, yielding
the Local and Piecewise hierarchies. [Rogers et al., 2013].

4 Tensor Representations of First-Order
Logic

This section overview’s [Sato, 2017]’s method for embed a

model domain and signature into a vector space, using tensors

to encode relational information.

Scalars are denoted with lower case letters like a. Vec-
tors mean column vectors and we denote them by boldface
lower case letters like a and a’s components by a;. D' =
{e1,...,en} is the standard basis of N -dimensional Eu-
clidean space RY where e, = (0---,1,---,0)7 is a vec-
tor that has one at the ¢ -th position and zeros elsewhere.
Such vectors are called one-hot vectors. 1 is a vector of all
ones. We assume square matrices, written by boldface up-
per case letters like A. I is an identity matrix, and 1 is a
matrix of all ones. Order-p tensors A4 € RP”, are also de-
noted by {a;, . 1} (1 <i1,...,i, < N). A’s compo-
nent a;, .. ;, is also written as (A);,, . ;. (aeb) = a’b
is the inner product of a and b whereas a o b = ab” is
their outer product. 1 o --- o 1 is a k-order tensor, and
lo---ol(e;,...,e;,)=(lee;,) --(leeg;)=1.

There exists an isomorphism between tensors and multilin-
ear maps [Bourbaki, 19891, such that any curried multilinear
map

fVi—=... =2V, =2V

can be represented as a tensor 7y € V, @ V; ® ... ® V.
This means that tensor contraction acts as function applica-
tion. This isomorphism guarantees that there exists such a
tensor 7/ for every f, such for any vy € V4,...,v; € V}:

fVl...Vj:Vk:TfXV]_X...XVj (3)

Following [Sato, 2017], we first isomorphically map a
model M to a model M’ in RY. We map entities ¢; € D to
one-hot vectors e;. So D is mapped to D’ = {eq,...,enx},
the basis of R". We next map a k-ary relation 7 in M to a
k-ary relation 7' over D’ which is computed by an order-k

tensor R = {r;, ., }, whose truth value [r(e;,,...,e; )] in
M is given by
[r(eiy, ... ei)]
= (eq;l,...,e,;k)
=R X11 € X12+ X1,4, €, 4)

= ril,...,ik, S {1,0} (\V”Ll, ,Zk S {1, ,N})

We identity ' with R so that R encodes the M -relation .
Let M’ be amodel (D', I') in RN such that I’ interprets enti-
tiesby I'(e;) = e;(1 < i < N) and relations r by I'(r) = R.

For the purposes of this paper, we restrict ourselves to bi-
nary relations and predicates. When r is a binary predicate,



the corresponding tensor R is a bilinear map and represented
by an adjacency matrix R as follows:

[[(6,',6’]')]] = (87; . Rej) = G?Re]' =Ti; € {1,0} 5)

Note that when r(z, y) is encoded by R as (x e Ry), r(y, )
is encoded by R, since (y ® Rx) = (x ¢ R”y) holds

We next inductively define the evaluation [F'] ;s 4+ of a for-
mula F' in M. Let a be an assignment in M and a’ the corre-
sponding assignment in M, so a(z) = e; iff a’(x) = e;. For
a ground atom 7 (e;,, ..., €;, ), define

[r(eis.--vei]) =Rley,. .. e)
(Vir,....ig € {1,...,N}). (6)

where R = {r;,....;, } is a tensor encoding the M -relation r
in M. By definition [F],, = [F],q holds for any atom F.
Negative literals are evaluated using =R defined as

e = R(ei,...,e,)
k @)
def m—"—
where =R = 1o---01—-R

[ (esy, .-

=R encodes an M -relation —r;. Negation other than nega-
tive literals, conjunction, disjunction, and quantifiers are eval-
uated in M’ as follows.

[-F] =1-[F] (8)

[FL AN =[] - [Fu] )]

[[Fl\/'-'\/Fh]]/=Hllin([[F1]]/+--~+[[Fh]]/) (10)
N

By F] = Illfll(z[[Fy“ei]]/) (11)

Here the operation ming (z) = min(z,1) = zifz < 1,
otherwise 1, as componentwise application. Fy, ., means
replacing every free occurrence of y in F' with e;. We treat
universal quantification is treated as Vo F' = ~Jz—F.

5 Compiling Subregular Formulas into
Tensor Algebra

[Sato, 2017] presents an algorithm for compiling any first-
order formula into a tensor embedding without grounding.
The algorithm works by converting a formula into prenex
normal form, Each quantified statement is put in conjunctive
or disjunctive normal form, depending on the quantifier, and
each formula is then converted to the appropriate tensor real-
ization.

Here we restrict ourselves to formulas with binary predi-
cates, which as stated above may be represented as adacency
matrices since their corresponding tensor is a bilinear map.
Sato shows that in that in these cases, we can often “opti-
mize” compilation by directly compiling a formula F' using
matrices.

5.1 Compiling a Locally Threshold Testable
Formula

Here we demonstrate a formula which is properly First Or-
der over the successor model for strings, characterizing a Lo-
cally Threshold Testable Language. With the ability to dis-
tinguish distinct occurrences of a symbol we can define a for-
mula which is satisfied by strings containing exactly one oc-
currence of some symbol b. Such a system is seen in phono-
logical stress patterns in the world’s languages, which often
mandate exactly one primary stress in a word. We do this
by asserting that there is some position in which b occurs
Jx(Ry(x)), and that there are no other positions in which b
occurs A(Vy)[Ry(y) — (z = y)]]. The conjunction of these
two gives the FO formula

Fone-B = (Eley)[Rb(x) A [Rb(y) - (33 = y)]] 12)
Converting this into prenex normal form we get
Javy(Rp(z) A [-Rp(y) V (z = y)] (13)

Compiling this formula into tensor notation is rather
straightforward.

%ne-B =
N N
ming ( Z 1 —miny (Z Rbe; o [(1- Rbel)+
i=1 j=1

+ (e; .ej)])) (14)

Intuitively, this formula checks whether two domain ele-
ments are the same via the inner product, and if both domain
elements have the property of being a b, then the formula
evaluates to 1. If either formula is not a b, or if two differ-
ent domain emelents are a b, the formula evaluates to 0. We
can apply this to to the successor model for abba in (1) by
defining each of the relational tensors in the formula over the
domainand relations in the model. Doing so, it is easy to see
that the formula evaluates to 0 (false) for domain elements 2
and 3, which are distinct and each have the property of being
ab.

5.2 Compiling a Non-Counting Formula

Next we demonstrate a formula which is properly First Or-
der over the precedence model for strings, characterizing
a Non-Counting language. We motivate this formula us-
ing a phonological pattern from Latin, in which in cer-
tain cases an [ cannot follow another [ unless an r inter-
venes, no matter the distance between them [Jensen, 1974;
Heinz, 2010]. This can be seen in the —alis adjectival suf-
fix which appears as —aris if the word it attaches to already
contains an [, except in cases where there is an intervening r,
in which it appears again as -alis.

The blocking effects in this non-local alternating pattern
requires the use of quantifiers, and is properly Non-Counting.
We can represent it with the following first-order formula:

Fdiss = Vl’vy[Rl(fB) A Rl(y) A R-< ($, y)] -
— J2[R-(2) A R<(z,2) A R<(2,y)] (15)



Converting this into prenex normal form we get

JoJyFe-[Ri(2) A Ri(y) A R<(2,y)]V
N [R7(Z) A R< (I‘, z) A R-<(Z> y)] (16)

The compilation of this formula is again quite straightfor-
ward:

N

N N
Taiss = ming ( Z ming ( Z ming ( E
i=1 j=1

k=1
1= [(Rlei) o (Rle) o (eiRe;)| +
+ [(Rzek) o (e;R7ex) e (ekR*ej)] ))) (17)

Intuitively, this formula tests whether, for any two domain
elements labeled [ and precede each other, there is another
element labeled r which comes between them. The use of
the precedence relation here shows that this can happen any-
where in the word, and can thus handle the Latin dissimilation
patterns above.

6 Extension to Tree Structures

The model-theory framework also allows describing tree
structures. [Rogers, 2003] describes a model-theoretic char-
acterization of trees of arbitrary dimensionality. In his frame-
work, we specify the domain D as a Gorn tree domain [Gorn,
1967]. This is a hereditarily prefix closed set D of node ad-
dresses, that is to say, for every d € D with d := «i, it holds
that « € D, and for every d € D with d = «ai # a0,
then o(i — 1) € D. In this view, a string may be called
a one-dimensional or unary-branching tree, since it has one
axis along which its nodes are ordered. In a standard tree, on
the other hand, the set of nodes is ordered as above by two
relations, “dominance” and “immediate left-of”. Suppose s
is the mother of two nodes ¢ and v in some standard tree,
and also assume that ¢ precedes u. Then we might say that s
dominates the string tu.

Figure 3: 2-dimensional tree model. Dominance and precedence
relations shown with solid/dashed and dotted lines, respectively

While a Gorn tree domain as written encodes these domi-
nance and precedence relations implicitly, we may explicitly

write them out model-theoretically so that a signature for a
Y-labeled 2-d tree T is TY = (D; <, <, [Rs]scx) Where <
is the immediate dominance relation and < is the “immedi-
ate left-of” relation. Model signatures that include transitive
closure relations of each of these have also been studied.

We can thus generalize strings as 1-dimensional tree mod-
els, and standard trees as two-dimensional trees, which relate
nodes to one-dimensional trees by immediate dominance. A
three-dimensional tree relates nodes to two-dimensional, i.e.
standard trees. In general, a d-dimensional tree is a set of
nodes ordered by d dominance relations such that the n-th
dominance relation relates nodes to (n — 1)-dimensional trees
(for d = 1, single nodes are zero-dimensional trees). Impor-
tantly, we may compile these into tensors without the recur-
sive role embeddings in Smolensky’s formulation.

7 Conclusion

This paper provided a method for geometrically characteriz-
ing subregular languages in vector spaces. Model-theoretic
descriptions of relational structures were embedded in Eu-
clidean vector spaces, and statements in first-order logic over
these structures were compiled into tensor formulas. Seman-
tic evaluation was given via tensor contraction over tensors
implementing a specific model. This method can easily be
extended to consider other relational structures, and to other
logics. Another application is to consider logical translations
between model signatures, which define mappings between
structures [Courcelle, 1994], another area relevant for lin-
guistics. The analytical power given by multilinear algebra,
combined with the representational flexibility given by finite
model theory and mathematical logic, provides a powerful
combination for analyzing the nature of linguistic structures
and cognition, and for exploring the relationship of languages
and computation more generally.
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